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ASYMPTOTIC MOTIONS AND THE INVERSION OF THE LAGRANGE-DIRICHLET THEOREM* 

V.V. KOZLQV 

The motions of natural mechanical systems which tend to an equilibrium 
position as time increases without limit are studied. The degenerate 
case when several frequencies of small oscillations vanish is explained. 
An existence theorem is proved for asymptotic trajectories on the 
assumption that the Maclaurin series for the potential energy has the 

I form Vz -t V, + 1,+1 +...(VBis a homogeneous form of degree s) and the 
function Vs + Vm does not have a local minimum at the equilibrium position. 
We proved earlier a claim /l, 2/ about the asymptotic motions for the 
special case when V$zO. This theorem is used to solve the question of 
the existence of asymptotic trajectories in the case of simple and unimodal 
singularities of the potential energy, for which "canonical" normal forms 
are known. Similar assertions also hold for the equilibrium positions 
of gradient dynamic systems. The existence of a trajectory, asymptotic 
to the equilibrium position, naturally implies that this position is 
unstable in Lyapunov's sense. 

1. Introduction. Statement of the results. Let x = 0 be a position of 

equilibrium of a natural mechanical system with potential V:R”- R, V(0) = 0. In the 
neighbourhood of the point x = 0, we can associate the smooth function V with its Maclaurin 
series v,+ v,+. . ., which is not necessarily convergent (V, is a homogeneous form of degree 
s). We shall study the asymptotic motions, i.e., the non-trivial solutions of the equations 
of motion t - 5 @), such that x @)-PO as t-too. Since time is reversible, the function 
t-.%(--t) is also a motion. Hence the equilibrium is unstable when asymptotic motions are 
present. If the potential energy has a local minimum at the equilibrium position, there are 
obviously no asymptotic motions. 

The assumption was put forward in /3/that, if function V is analytic, asymptotic 
motions exist provided that z = 0 is not a local minimum point V. In the infinitely 
differentiable case, the condition that V be analytic can obviously be replaced by the condition 
that the function V, + . . . 4- Vt should have no minimum for some k. The assumption is not 
valid without auxiliary constraints of this kind, as is shown by the celebrated Painleve- 
Wintner example, see /3/. 

The hypothesis of asymptotic motions has been proved inthefollowing cases: 
a) n<2,s=O is an isolated critical point of V; 
b) V is a semiquasihomogeneous function in R”; 

c) V*=...= V,,,+z 0, while the form V, has no local minimum at x = 0. 

In cases a) and b), the proof of the existence of asymptotic motions utilizes the 
following claim, which we shall use below. 

Lemma 1 /3/. Let z = 0 be an isolated critical point of potential V, but not a local 
minimum point of V. If, in the domain cr,- = {x : 1 x I < e, V(z)<O), there exists a differ- 
entiable vector field I, such that 

(v, V,‘) < 0 in Uem 

(4% E) > CE2 for all SE R” and xf U,-, c> 0 

lv(rcfI-+O as X-+0 

then the equations of motion have an asymptotic solution. 
The case n = 1 is trivial. In the case n = 2 the vield L' is constructed in /4/ when 

proving the instability of the equilibrium. In case b) the field v is indicated in /5/. 
The proof of the existence of asymptotic motion under assumption c) is based on different 
considerations. Here it is no longer assumed that the critical point x = 0 is isolated (in 
the real sense). In the analytic case the asymptotic motions are sought as convergent series, 
whose form depends essentially on the parity of m 

*Prikl.Matem.l4ekhan.,50,6,928-937,1986 

719 



720 

(1.1) 

(‘4 

(1.3) m=2k, k-22, r(t)=-$ x 
z..(lnt)j 
'1 

t'P 
i,j=o,jQzi 

2 
p=m--f’ XsjEER” 

The case m== 2 is Lyapunov's classical result c/6/, Sect.24). The case of odd m is 
considered in /l/, and the case of even m greater than two, in /2/. In practice the most 
typical situation is obviously when m = 2. In certain problems, cases m>2 have to be 
considered. These include e.g., the problem of the stability of a system of charges in an 
electrostatic field. In this problem every non-trivial form of the Maclaurin expansion 
(including V&is a non-constant harmonic function which takes both positive and negative 
values. Hence follows, in particular, the strict proof of the well-known Earnshaw theorem 
on the instability of equilibrium of a system of free charges in a stationary electric field 

/7/. 
If the Lagrange function of the natural mechanical system is infinitely differentiable, 

but is not analytic in RX" x RX.% (say the function V is non-analytic), then, under the 
assumptions of case c), the equations of motign again have solutions in the form of series 
(l.lf-11.31. However, these series are in general divergent , and in this situation we can 
speak of the "formal instability" of the equilibrium position. in connection with this remark 
the interesting problem arises as to whether formal instability implies Lyapunov instability. 
In the case m = 2 the answer is well-known to be yest (see e.g., /8/, Chapter 4; the case 
of equations of dynamics is discussed in detail in /9/l. It turns out that the situation is 
similar for degenerate positions of equilibrium (see Sect.3). 

Let us take the more general case when the Maclaurin series of function V has the form 
v, + v, + v,+, + . . ., m> 3. From the point of view of case c) (when m = 2) it is only worth 
considering the non-negative form V,. We know from linear algebra that the set of points of 
Rn 
point 

at which the quadratic form V, = 0, forms a k-dimensional plane n, containing the 
I == 0. From the point of view of the theory of small oscillations, preciselykfrequencies 

vanish in this case. It will be assumed henceforth that k>O. Otherwise, form V, is positive 
definite, the equilibrium position is stable, and there are no asymptotic motions. Let W, 
be the bound of form V, in the plane 3t. Clearly, W, is a homogeneous form of degree m. 

X%eorem 1. If the function W, does, not have a local minimum at the point z = 0, then 
the natural system has motions which are asymptotic at the point 5 = 0. 

Corollary. Under the assumptions of Theorem 1, the equilibrium z = 0 is unstable. 
If m is odd, the condition tha there is no minimum can be replaced obviously by the 

condition W,,,+O. In "typical" cases of degeneracy, form W, obviously does not vanish 
identically. Thus the bifurcation points of general position correspond to unstableequilibrium 
states (this claim will be refined in Sect.4). In the case when m= 3,k= 2, the instability 
of the equilibrium was earlier proved in /lo/. The case when k= I, but m is arbitrary, is 
considered in /ll/ from the point of view of stability; here, in suitable coordinates, the 
potential V is obviously a semiquasihomogeneous function. 

It is well-known that the typical equilibrium positions are non-degenerate critical 
points of the function V (i.e., form V, is non-singular); they are "stable" to small dis- 
turbances of the function V. Conversely, degenerate equilibria are destroyed under disturbances 
of a fairly general kind. The impression may thus be created that the study of degenerate 
equilibria (their stability, the presence of asymptotic solutions, etc.) leads to nothing 
significant. This is not the case, however. In practice, the potential usually depends on 
a certain number of parameters. We know from catastrophe theory that, on disturbance of 
smooth families of potentials, the degenerate equilibria as a rule do not disappear, but 
merely change their position slightly, while remaining degenerate (for a disucssion of these 
questions, see e.g., /12/l. By combining Theorem 1 with the classification of simple and 
unimodal singularities, it can be shown that the hypothesis of asymptotic motions is valid 
for degenerate equilibria, which reveal themselves inherently in typical families of potentials, 
dependent on not more than 10 parameters (see Sect.4). 

while no attempt is made in the present paper to explain all the formal and analytic 
aspects of this problem, we to emphasize the importance of analysing degenerate positions Of 
equilibria of natural systems. 

2. Formal instability. Let V= V,+ V, +.... With the quadratic form V, can 
be associatedthe unique bilinear symmetric form Cp such that V,(x)= (D&Z). Let n be the 
zero plane for form @', i.e., the set of all vectors s=R'" such that Q{fs,g) = 0 for all 
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y E R”. If V, > 0, then SC = (x: v2 ix) = 0). 

Lemma 2. In the neighbourhood of the point z =O we can introduce coordinates x1,,. ‘ .,G, 
in which 

the kinetic energy 

where aij are smooth functions of r,,...,x",, which vanish for $I = . . . = xn = 0; 
the potential 

where 1% = tb- dims, and W is a smooth function, W = W* -k e ).. 
For the proof, we first have to introduce normal coordinates, then use the lemma on 

splitting Uf3/, Chapter 41. The variables z,{I <s<kk) will henceforth often be denoted 

by ~1, . . .9 Yk, and Q+* M<s<n-k) by zl,_. .,z,(k-l-l=n). If V=V,+V,+..., and w, is 
the bound of form V,on n, thenW,is the first non-trivial form of the Maclaurin series of 
the function z+-+ &' 6~). 

In variables 

can be written as 

. < 
Yv = the equations of motion 

(&')'==L,', L==K--V 

the system 

The unwritten terms in these equations have orders of smallness respectively not less 
than 2 and m; the symbols (r(x)x',x') denote quadratic forms in variables x8* with smooth 
coefficients, dependent on s*, . . ..x.. 

T&mm 2. If Wm:n+R does not have a iocal minimum at zero, then Eq.fZ.1) has 
solutions in the form of formal series 

if m is odd, orin the formof formal series 

if m is even and m> 2. 
The proof is by induction, increasing with respect to i and decreasing with respect to 

j (see /I, 2/l. The most important step in the proof is to find the coefficients of the 
series for 2. If say the coefficients I@) up to and including the number s, and the 
coefficients y@) up to number S- 1, are found in series (2.21, then the coefficient $8) 
can be found uniquely from the first group of Eqs.(2.1). For, equating coefficients of 
powers llt2WtsU, we see that the coefficient y@) can appear only when terms +cotay, are taken 
into account. The terms of lowest degree 2p i-2 in the series for y appear as a result of 
terms of the type &,~a' zp* (AM = const) on the left-hand side of the first equation of (2.1). 
The vectors z(*) and .@) 1 by means of which all the remaining coefficients are found, are 
put equal to ae, where a = cunst, and e is the unit vector on which the form W, is minimized 
on the unit sphere 1 z / = 1. The real parameter a is chosen from the condition that the 
function cte/P satisfies the "simplified" equation of motion (cf. /l/1 

i‘ = -CGVm/c%s, s=R' 
Note that, if k = 0, the simplified equation corresponds to the "shortened" system of 

/14/. 
The reason why logarithms appear in series (2.31 with even m>Z can be seen from the 

example of the system with one degree of freedom 

x"~u((3)1‘~=21+az4~...,+~R (2.4) 
The simplified system s"= 28 has the solution r(t)= lit. tJe shall seek the asymptotic 
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solution of the complete system (2.4) as the series 

z= l/t+2*/t2+2,/1~+... (2.5) 
Substituting this series into (2.4) and collecting terms of order t-4, we obtain the 

relation a, = a(~ = a(O)). Consequently, if ao#a, then Eq.i2.4) has no solutions in the form 
of power series. Putting s=lit+v and assuming that y is small, we obtain from (2.4) a 
linear inhomogeneous equation, which we can reduce by the substitution y=&'. t=el, to an 
equation with constant coefficients (the prime denotes derivatives with respect to T) 

I" + 30' - 42=(.--s&e-= (2.6) 
Among the roots of the characteristic equation is the number -4, so that, with a=+~, 

the solution of (2.6) has to be sought in the form CW~? c = coimt. Returning to the old variables, 
we obtain in the expansion of the asymptotic solution the term (clntflt". If, however, czo= a, 
then Eq.(2.4) has a one-parameter family of asymptotic solutions of type (2.6); the coefficient 

% is a parameter. Notice that, if system (2.4) admits of the involution z-n---, then 
a, = D = 0. This remark can be generalized. 

Proposition 1. If m-4 and the Lagrangian L = K - V admits of the involution 
SW--2, then series (2.37 do not contain logarithms and their coefficients depend on an 
arbitrary constant. 

For even m> 4 this claim is false: symmetry of a higher order is requised. 
We shall seek the solutions of Eqs.(2 .l) as the series (2.2). It can be shown (see /l/j 

that the vector zfi) satisfies the linear equation 

One eigenvalue of the symmetric matrix A is 2m (m- j)/(m- 2)‘, while the remainder are 
non-positive. The vector ati) is uniquely defined in terms of the known vectors z("),...,z(i-1). 
If rn== 4, the equation for z@) can prove to be unsolvable only with i = 1. However, a(') = 0, 
since (since the Lagrangian is even with respect to the variable X) these are no terms of 
order 4 on the right-hand side of the second equation of (2.1) and r,(O)= 0. As z(l) we can 
take any eigenvector of the matrix (A - 6E). 

By the defintion of Sect.1, Theorem 2 asserts that the equilibrium X = 0 is formally 
unstable, if the form~~some~here takes negative values. Let us emphasize that the 
coefficient I' in Eqs.(2.1) need not then necessarily be the same as the Christoffel symbols 
of the Riemann metric, specified by the kinetic energy. As distinct from series (l-2), (1.31, 
series (2.21, (2.3) may be divergent (and usually are), even in the analytic case. 

The reason for the divergence can easily be seen from the model example: 

5" =i $2X2, y" - X.2 = --y (2.7) 

In this case m = 3 and !VB = -4x8. system (2.7) has the formal solution 

(2.8) 

The radius of convergence of the series for y is zero. 
Theorem 2 also holds in the infinite-dimensional case, when the co-dimensionality of 

degeneracy of the quadratic form of the Maclaurin expansion of the potential energy is finite. 
This assumption holds, for examples , in problems on the oscillations of elastic constructions 
t/13/, Chapter 13). Admittedly, an elastic rod loaded at the ends retains stability at the 
first point of bifurcation. In more complicated situations, however, connected with "cracking'" 
of the rod, this is no longer the case: the form W8+0, and hence the rod loses stability 
at points of bifurcation. In the case of simple degeneracies, the potential energy is a semi- 
quasihomogeneous functional, and hence instability of the equilibrium can be deduced from 
Lemma 1 after suitable generalization. 

3. The existence of asymptotic motions. Let us start by analysing the dynamic 
system of Sect.2, described by Eqs.(2.7). The divergent series for y can be assumed by the 
following device. Putting zz = 1/(2t4), we obtain a linear differential equation for y: Y" 4 
Y =: t-6. Solving it by the method of varying the constants, we find the Solution 

which tends to zero as t-+ + 00. Performing successively integration by parts, we can obtain 
from (3.1) the series (2.81. Hence we can naturally regard function (3.1) as the sum (in the 
generalized sense) of divergent series (2.8). This method of summing divergent series is 
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similar to the familar Bore1 method /'15/. Putting 

we see that [ y (t) - ye (t) 1 = 0 (llPN). Thus the divergent power series (2.8) is the asmyptotic 
series of function (3.1). 

The observations can be extended. 

Theorem 3. Under the assumptions of Theorem 2, Eqs.(2.1) have 
for which series (2.21, (2.3) are the asymptotic expansions. 

Let m be odd. The equation of motion x'* = f (x*,x),xE R” will 
system x' = u, v' = f (u, x), then we make the change of time t++ z in 
a = ll(m - 2). Denoting by a prime differentiation with res,pect to 

- @a+l)ia2'=y, - @a+l)'ay'zf(y,5) 

asymptotic solutions, 

be rewritten as the 
accordance with T = l/P, 
r, we arrive at the system 

(3.2) 
with smooth right-hand side, which has a solution in the form of the formal series r, X%,7”. 

Since (a + 1)/a is an integer, we can use the theorem of /16/, which guarantees the existence 
for system (3.2) of a smooth solution ZctZ(T, for which Za;;c" is its Maclaurin series. 
If m is even, we can put a = p. Then, (a -I- %)/a = m/2 is again an integer. In this case, 
Theorem 3 follows from the theorem of /16/, extended to the case when the formal solution 
contains powers of lnz. The fact that the results of /16/ can be thus extended was pointed 
out to the author by V.P. Palamodov. Incidentally, only the case m = 4 will henceforth be 
considered: with the extra assumption that the Lagrangian is even with respect to the variable 

5, we can obtain from Proposition 1 and the results of /16/ the existence of an entire 
family of different asymptotic motions. Theorem 1 follows from Theorems 2 and 3. 

In connection with Theorem 3 the interesting problem arises concerning the uniqueness 
of the solutions of equations of motion with given asymptotic series (2.2), (2.3). The 
familiar sufficient conditions for uniqueness demand in particular that the coefficient with 
number R be equal to Ofnlu") /15, Chapter S/. These conditions hold for series (2.8). It 
would appear that we have uniqueness in the analytic case. 

4. Simple and unimodal singularities. The classification of degenerate critical 
points of smooth real functions of several variables is well advanced. In particular, the 
normal forms of the singular points, which are inherently encountered in smooth families of 
functions that contain not more than 10 parameters, have been evaluated (all the necessary 
definitions and results may be found in /12, Chapter 2/). 

Theorem 4. If the equilibrium position is a simple or unimodal singular point of the 
potential and the potential does not have a local minimum at the equilibrium position, then 
the equations of motion have solutions which are asymptotic to this equilibrium. 

In classes of functions of co-dimensionality C< ~~,On~ysimpleandunimodalsin~lar~ties 
are inherently encountered. 

The proof of Theorem 4 uses the tables of normal forms of shoots of smooth functions to 
be found in /12, Sect.l7/. In the case of a simple singularity, function N of Lemma 2 reduces 
to one of the following types: +sx+l (k 3 1), x2y + ~“-1 (k > 4), 9 & y4, xs $ xya, .rs + $. In the 
last four cases Wa+O, so that the equilibrium is always unstable. Simple singularities 
satisfy Theorems 2 and 3. Notice that, in these cases, the potential is a quasihomogeneous 
function, so that the existence of asymptotic motions can also be deduced from Lemma 1. 

The table of unimodal shoots contains 26 distinct types of normal forms. Without quoting 
them, we merely mention that, in 17 cases, the form Ws+ 0, and in 7 cases W is a semiquasi- 
homogeneous function (so that Lemma 1 is applicable). The two types of singularity X,,, 
and Y,., deserve special attention. The normal forms of the function w are: is" i_ xep2 + 
ap+h' (a # 0, k > 0) and +xzyz+xr + ay'(af 0, r, s>4). In these cases, Theorems 2 and 3 are 
not always applicable. A simple example is W = x4 + xzy2 + y6. Let us attempt to use Lemma 1. 
For this, we first prove. 

Proposition 2. Let V= X + Y, where X and Y are quasihomogeneous functions of degrees 
s and r, O<s< r, with the same indices of quasihomogeneity a*,...,a,. We assume that the 
critical point x = 0 is isolated and is not a local minimum of V. Then, there is a motion, 
asymptotic to the point I = 0, if one of the following conditions also holds: 

a) YgO in the domain {z: v (2) <O}, 
b) ?c > 0 in thedomain@: V(X)< 0). 
FOT the proof we take the vector field v = Ax, where A = diag(a,, . . ..a.). Then, by 

Euler's formula, Iv, V,‘) = sX +rY. In case a) this is equal to SV + (r - s)Y, and in case 
b), to - rV + (s - r)X. It remains to use Lemma 1. 

The following is proved by the same method: 
Let the analytic potential V be expressible as V, + . . . -j- Vk + Vk+l + . . . . where V, are 

quasihomogeneous forms of degree s with the same indices of quasihomogeneity. We assume that 
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the point z = 0 is not a local minimum of V and in the domain U,- == fx: Ix I< e,V(s)<O} the 
forms v,> 0, . . . . VS, > 0, while Vn+r < 0, . . . Then the equilibrium x =0 is unstable. 

In the case when a, = . . . = a,, this claim is the same as Chetayev's familiar result /lJ/. 
For clarity, take the singularity X,,,. If the term ~2~2 appears with the plus sign, 

we put X= z12+... f Zk2 + "'ye, Y = fZ' + ,y4-k The functions X and Y are quasihomogeneous of 
degree x(4+&+8 and 4(4-l-k) with indices of quasihomogeneity 4+k and 4 with respect 
to the variables 2,y and with indices X+ k with respect to zs,. Since XbO, we can apply 
Proposition 2. We now put X = alai- ...j~k~f~~-x~y~,Y= ay"'@. Clearly, the form Y<O in one of 
the connected components of the domsin{I'<O),if k is odd, or k is even and a<O. In these 
cases we can again use Proposition 2. The case W = &z4 --@ + .,I/+~", a > 0, k > 0. remains 
unconsidered. However, the form W,= -&e&t54 has not a local minimum at the point I=- !I = 
0, so that Theorems 2 and 3 are applicable. Moreover, if the coeffidients of the quadratic 
form g are even functions, we can use Proposition 1. The singularity Y,,, can be treated 
similarly. 

5. Thorn's problem. A system of the type 

is called a gradient dynamic system. Here, t?ij = gli are coefficients of a metric tensor, 
smoothly dependent on x1, . . ..x.,, and V: R"-+R is a smooth function which will henceforth be 
called the potential. We again assume that N(O)= 0 and V(0) = 0. Gradient systems seem 
to have first been considered by Lyapunov in connection with the analytis of the stability 
of equilibrium positions (/4/, Sect.16). They were then studied by Smale in the theory of 
structural stability /18/, and by Thorn and his successors in catastrophe theory /19/. It 
happens that we can apply to them the arguments used above for natural mechanical systems. 

Proposition 3. Let V be an analytic function which does not have a local minimum at the 
point s=O. Then, the equilibrium x = 0 is unstable. Under the extra assumption that the 
critical point 5 = 0 is isolated (in the real sense), system (5.1) has a solution t * 5 (t) 
such that x(t)+0 and f-+--m. 

For the proof, we use the equation 

where II&j/ is a positive definite matrix inverse to UgijB. Since the function V is analytic, 
there are no critical points /20/ in a small neighbourhood of zero in the domain (V(=)<O). 
Hence V isachetayev function and the equilibrium s=O is unstable. A more significant claim 
about the existence of an asymptotic solution departing from the point z= 0 follows from 
Krasovskii's theorem and the instability f/21, Sect.l3/). It is not clear whether asymptotic 
solutions always exist when the critical point z= 0 is not isolated. Notice that, if V is 
analytic at the point r=O, which is a local minimum of V, then the equilibrium z=o is 
asymptotically stable (see /4, Para.l6/). 

Thorn put forward the hypothesis of the existence (in the conditions of Propostion 3) of 
asymptotically departing trajectories with the limiting tangential direction 

As far as the present author knows, this problem has still not been fully solved. For 
non-degenerate critical points, exhaustive information about the asymptotic solutions can be 
deduced from the results of /9/. 

Lemma 3. In Certain coordinates t = ($/l, _..,yk, Zlr . . . . ZI), k f 2 = n, the coefficients 
gjf =f 6,j i- Uij (X), Utj (0) = 0, while V =ii & 012y,2/2 & . . . t C0kayk"/2 -i- W(Z,, . . ., z!), where w = 
ws + . . . 

This claim is just the same as Lemma 2. 

Theorem 5. Let W = Wm + W,+, -+- . . . and let fromW,have no local minimum at zero. 
Then, asymptotic solutions of Eq.(5.1) exist, whose asymptotic expansions are 

y_ 1 r, Y(Tt” 1) 2 
p+l 

i, j=O, jCui 
1 

zz- 22 Pj) (in t$ 
‘lr i. j=O j<&i 

7’ c6=& * . 

(5.3) 
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The proof is the same as in Theorems 2 and 3. The coefficients of the first terms of 
series (5.3) give precisely the limiting position of tangent (5.2). The logarithms of t in 
series (5.3) appear independently of the parity of m. In special cases there may be no 
logarithms; the coefficients in (5.3) then contain "moduli", i.e., arbitrary real constants. 
If k=O, then series (5.3) are convergent in the analytic case (see /2/). 

From Theorem 5 we can obtain 

Corollary. Thorn's hypothesis is certainly valid for degenerate critical points, which 
inherently appear in families of functions which depend on not more than 9 parameters. 

For singularities of the type ?&+r and Y,,, , Theorem 5 is not in general applicable. 
However, the co-dimensionality of these classes of functions is not less than 10. 
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